
P������� S������ S�����

B����� ��� C����
E�������� S��������� C�������� ��� C���� C��������

PART ONE

Valerio Besozzi

March 1, 2024

I�����������

A L����� H��������� N��� �� C����

Computing may someday be organized as a public utility just as the telephone system is
a public utility. Each subscriber needs to pay only for the capacity he actually uses, but
he has access to all programming languages characteristic of a very large system .. .

Certain subscribers might o�er service to other subscribers.
(Professor John McCarthy, 1961)

1

A L����� H��������� N��� �� C���� (����’�)

From that speech, our story begins, arriving today at the modern concept of the cloud as we
know it. Some of the most important moment in cloud evolution are:

I 1961 - Prof. J. McCarthy’s speech for MIT’s centennial celebration.

I 1968 - IBM launches CP-40/CMS, introducing virtualization.

I 1969 - ARPANET is launched.

I 1991 - World Wide Web opens to the public.

I 1997 - Ramnath K. Chellappa coins the term "Cloud Computing".

I 1998 - Ian Foster et al. formalize the concept of "Grid Computing" [18].

I 1999 - VMWare introduces VMWare Workstation.

I 2006 - Amazon launches AWS.

I 2011 - NIST Cloud Computing Reference Architecture [32].

2

I�����������

Cloud Computing
Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management e�ort or service provider
interaction.

Three main categories of cloud computing service models [32] [8]:
I Infrastructure as a Service (IaaS)
I Platform as a Service (PaaS)
I So�ware as a Service (SaaS)

Moving toward Everything as a Service (or XaaS).

3

I�����������

Cloud Computing
Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management e�ort or service provider
interaction.

Three main categories of cloud computing service models [32] [8]:
I Infrastructure as a Service (IaaS)
I Platform as a Service (PaaS)
I So�ware as a Service (SaaS)

Moving toward Everything as a Service (or XaaS). 3

I�����������: T�� R��� �� S���������
Serverless computing represents a significant evolution in cloud computing. It is a disruptive
technology as it completely eliminates the need for managing infrastructure and back-end.

4

S��������� C��������

I����������� �� S���������
Serverless
Serverless computing is a form of cloud computing that allows users to run event-driven and
granularly billed applications, without having to address the operational logic [16].

5

I����������� �� S��������� (����’�)

Depending on the di�erent level of control o�ered to developers, a serverless service could fall
into di�erent levels of the NISC cloud reference model.

6

S��������� S������M�����: N�� O��� F��S...

7

P������ A�� T�������!
1. A pre-defined event triggers a serverless
function that was bound to it earlier.

2. The serverless platform prepares the necessary
execution environment for the triggered
function to run (i.e., instance init., application
transmission, and so on.).

3. A�er executions are completed, the serverless
platform releases the resources previously
acquired.

It’s very simple, isn’t it?

8

P������ A�� T�������!
1. A pre-defined event triggers a serverless
function that was bound to it earlier.

2. The serverless platform prepares the necessary
execution environment for the triggered
function to run (i.e., instance init., application
transmission, and so on.).

3. A�er executions are completed, the serverless
platform releases the resources previously
acquired.

It’s very simple, isn’t it?
8

C������ S��������� P��������
Currently, there are several serverless options available, including both commercial and open
source solutions.

I Commercial:
I Amazon’s AWS Lambda
I Google’s Cloud Functions
I Microso� Azure Functions

I Open Source:
I OpenFaaS
I Apache OpenWhisk
I Knative

9

U�� C����

10

R������� D���������

C������ R������� D��������� ��� O��� P�������

11

S������� F��S
Serverless functions are developed in a stateless way.

I But there may be situations where it is necessary to transfer state.
I The situation is more complicated for serverless applications modeled as DAGs [11].

Solutions:

I Leverage on public cloud storage services (i.e., AWS S3) �Overhead!
I Use a distributed storage at the edge (i.e., Akka) [12] � Depends on the case scenario.
I Pass the state on each function call � The client maintains the state.
I Use an orchestrator to coordinate serverless functions andmaintain state.

I AWS Step Functions
I Azure’s Durable Functions [7]
I Apache OpenWhisk through Action Sequences

But are there better solutions?

12

S������� F��S
Serverless functions are developed in a stateless way.

I But there may be situations where it is necessary to transfer state.
I The situation is more complicated for serverless applications modeled as DAGs [11].

Solutions:

I Leverage on public cloud storage services (i.e., AWS S3) �Overhead!
I Use a distributed storage at the edge (i.e., Akka) [12] � Depends on the case scenario.
I Pass the state on each function call � The client maintains the state.
I Use an orchestrator to coordinate serverless functions andmaintain state.

I AWS Step Functions
I Azure’s Durable Functions [7]
I Apache OpenWhisk through Action Sequences

But are there better solutions?
12

P���������� F���������
Specific serverless frameworks are necessary to target
di�erent domains:
I Numerical Computing:

I NumPyWren [41]
I Video Processing:

I ExCamera [19], and Sprocket [3]
I Internet of Things:

I AWS IoT Greengrass [29], and Azure IoT Edge [24]
I tinyFaaS [37], AuctionWhisk [6], and PAPS [5]

I Big Data Analytics:
I MapReduce for Serverless [21]

I Machine Learning:
I BATCH [2], and Cirrus [10]

Mature tools are needed to
facilitate the adoption of the

serverless model.

13

P���������� F���������
Specific serverless frameworks are necessary to target
di�erent domains:
I Numerical Computing:

I NumPyWren [41]
I Video Processing:

I ExCamera [19], and Sprocket [3]
I Internet of Things:

I AWS IoT Greengrass [29], and Azure IoT Edge [24]
I tinyFaaS [37], AuctionWhisk [6], and PAPS [5]

I Big Data Analytics:
I MapReduce for Serverless [21]

I Machine Learning:
I BATCH [2], and Cirrus [10]

Mature tools are needed to
facilitate the adoption of the

serverless model.
13

P����������

Main Challenge �Minimize the startup time.

The startup time is influenced by three main phases [25]:

1. Scheduling and starting the resources needed to run the cloud function.
2. Setting up the environment where to run the cloud function.
3. Performing application-specific startup tasks.

In case of a cold start, the last two phases have a significant impact on the overall startup time.

And Now for Something Completely Di�erent. . .

14

https://www.youtube.com/watch?v=C-M2hs3sXGo

P����������

Main Challenge �Minimize the startup time.

The startup time is influenced by three main phases [25]:

1. Scheduling and starting the resources needed to run the cloud function.
I Use scheduling algorithms [45] [26].
I Schedule functions in (existing) warm instances.

2. Setting up the environment where to run the cloud function.
3. Performing application-specific startup tasks.

In case of a cold start, the last two phases have a significant impact on the overall startup time.

And Now for Something Completely Di�erent. . .

14

https://www.youtube.com/watch?v=C-M2hs3sXGo

P����������

Main Challenge �Minimize the startup time.

The startup time is influenced by three main phases [25]:

1. Scheduling and starting the resources needed to run the cloud function.
2. Setting up the environment where to run the cloud function.
3. Performing application-specific startup tasks.

In case of a cold start, the last two phases have a significant impact on the overall startup time.

And Now for Something Completely Di�erent. . .

14

https://www.youtube.com/watch?v=C-M2hs3sXGo

P����������

Main Challenge �Minimize the startup time.

The startup time is influenced by three main phases [25]:

1. Scheduling and starting the resources needed to run the cloud function.
2. Setting up the environment where to run the cloud function.
3. Performing application-specific startup tasks.

In case of a cold start, the last two phases have a significant impact on the overall startup time.

And Now for Something Completely Di�erent. . .

14

https://www.youtube.com/watch?v=C-M2hs3sXGo

N���� �� V�������������
Depending on the level of abstraction, virtualization can be
divided into three main categories [8]:
I System-level Virtualization:

I Type I/Native Hypervisor (i.e., Xen).
I Type II/Hosted Hypervisor (i.e., VMWare, KVM, VirtualBox).
I i.e., Unikernels.

I OS-level Virtualization:
I a.k.a. container.
I i.e., Docker, FreeBSD Jails, and others.

I Programming Language-level Virtualization:
I Execution through:

I Interpretation
I Just-In-Time compilation

I i.e., JVM (Java), PVM (Python), and WebAssembly. 15

N���� �� V�������������
Depending on the level of abstraction, virtualization can be
divided into three main categories [8]:
I System-level Virtualization:

I Type I/Native Hypervisor (i.e., Xen).
I Type II/Hosted Hypervisor (i.e., VMWare, KVM, VirtualBox).
I i.e.,Unikernels.

I OS-level Virtualization:
I a.k.a. container.
I i.e.,Docker, FreeBSD Jails, and others.

I Programming Language-level Virtualization:
I Execution through:

I Interpretation
I Just-In-Time compilation

I i.e., JVM (Java), PVM (Python), andWebAssembly. 15

D�����
I OS-level Virtualization.
I Docker containers share the host OS kernel.

I More lightweight than VMs.
I But a kernel crash blocks all the containers on the same PM.
I Also, shared kernel introduces potential security risks.

I Docker images make containers portable.
I An image encapsulates an application and its dependencies.
I It is possible to move containers between di�erent systems.

I Each container has its own file system, libraries, and
dependencies.
I This can result in higher storage andmemory usage.

Currently is the de facto standard virtualization solution used for serverless functions.

16

D�����
I OS-level Virtualization.
I Docker containers share the host OS kernel.

I More lightweight than VMs.
I But a kernel crash blocks all the containers on the same PM.
I Also, shared kernel introduces potential security risks.

I Docker images make containers portable.
I An image encapsulates an application and its dependencies.
I It is possible to move containers between di�erent systems.

I Each container has its own file system, libraries, and
dependencies.
I This can result in higher storage andmemory usage.

Currently is the de facto standard virtualization solution used for serverless functions.
16

W��A������� (wasm)
I Programming Language-level Virtualization.
I Presented in 2015, launched in 2017.
I It is a general-purpose virtual ISA [39].

I It is designed to work with a stack-based virtual machine.
I It is both source language and target platform agnostic.

I It supports compilation from C/C++, Rust, and any other
LLVM-supported languages.

I There are several Wasm runtime implementations
available.

I TheWebAssembly System Interface (WASI) provides an
API for interacting with underlying resources [43].
I It makes it possible to run WebAssembly outside of the

browser.
17

U�������� ��� L������ OS
I System-level Virtualization.
I Based on the work done on Exokernel [15] and
Nemesis [31].

I Exploit the concept of Library OS.
I Reduce OS services to the minimum required

for a specific application or service.
I These are compiled, along with the

application, into a single bootable VM image.

I Cloud (micro)service deployed within a Guest
Library OS, running on a hypervisor.

I Popular examples: MirageOS [34], Hermit [30],
Unikra� [28], andmany others.

18

U�������� ��� L������ OS (����’�)

Advantages

I Provide better performance than
containers [22].

I Reduce the number of so�ware layers
deployed on a node in a cloud
infrastructure.

I Reduce overheads caused by
user-space/kernel-space transitions in the
guest running in a VM.

I Reduce the attack surface.

Disadvantages

I Poor development tool support.
I Need for special compilation toolchain.
I Less flexible than containers.
I Lack of multi-thread support. Parallel
applications split into multiple unikernels.

I As unikernels run in Ring 0 (a.k.a.,
supervisor mode), any vulnerabilities in
the system could actually increase the
attack surface [14].

19

P���������� (����’�)
There are several approaches for mitigating the cold start issue:
I Data Cache-based optimizations:

I SOCK [36], alternative to Docker containers.
I Targets Python workloads.
I Exploits Python package caching and Zygote provisioning.
I It is based on OpenLambda [23].

I SAND [1], introduces a di�erent approach to sandboxing.
I Two levels of fault isolation:
1. Isolation between di�erent applications.
2. Isolation between functions of the same application.

I Application functions run in the same container, but as separate
processes � Shared libraries loaded only once!

I Interacting functions, located in the same host, communicate
through a local bus � Reduce communication overhead.

20

P���������� (����’�)

I Architecture Design optimizations:
I Use Language-level Virtualization �WebAssembly.

I i.e., WasmEdge [33] and WoW [20].
I Support for a large number of programming languages.
I Currently, libraries and development tools are not mature yet. . .
I . . .but something is moving (see containerd support for WASM).

I Use System-level Virtualization � Unikernels.
I i.e., USETL [17], framework for serverless ETL workloads.
I Better performance w.r.t. standard containers (i.e., Docker).
I Also here, lacks of development tools and libraries.

I Instance Prewarm optimizations:
I Launch function instances in advance to serve the incoming

request [44].
I Di�erent approaches can be used to predict future function

invocations. 21

https://docs.docker.com/desktop/wasm/

P���������� (����’�)

I Snapshot-based optimizations:
I Use snapshots to reduce high latency due cold starts.
I Capture the complete state of an initialized function. Saves it

on storage.
I When the same function is invoked again, restore its state

through the saved snapshot.
I i.e., SEUSS [9] � Based on Unikernels.

Currently, these proposals are still limited to the research domain. More work needs to
be done before they can be implemented in real-life applications.

22

P���������� (����’�)

I Snapshot-based optimizations:
I Use snapshots to reduce high latency due cold starts.
I Capture the complete state of an initialized function. Saves it

on storage.
I When the same function is invoked again, restore its state

through the saved snapshot.
I i.e., SEUSS [9] � Based on Unikernels.

Currently, these proposals are still limited to the research domain. More work needs to
be done before they can be implemented in real-life applications.

22

A���������� S�������
Current serverless platforms are predominantly centered on CPU resources.

I However, some kinds of workloads could benefit from the use of hardware accelerators.
I i.e., Video Processing, Machine Learning, Artificial Intelligence, and others.

How can the serverless model be adapted to support di�erent types of heterogeneous
accelerators?

I BlastFunction [4] � FPGA-as-a-Service.
I It is an FPGA sharing system for

accelerating serverless applications.
I It uses a time-sharing approach to

maximize device utilization in a
multi-tenant environment.

I Molecule [13] � Distributed Shim.
I It introduces XPU-Shim, which provides

system call style interfaces to serverless
runtime.

I By using XPUcalls, serverless functions
can be instantiated on di�erent PUs (i.e.,
DPU), and communicate directly with
each other.

23

A���������� S�������
Current serverless platforms are predominantly centered on CPU resources.

I However, some kinds of workloads could benefit from the use of hardware accelerators.
I i.e., Video Processing, Machine Learning, Artificial Intelligence, and others.

How can the serverless model be adapted to support di�erent types of heterogeneous
accelerators?

I BlastFunction [4] � FPGA-as-a-Service.
I It is an FPGA sharing system for

accelerating serverless applications.
I It uses a time-sharing approach to

maximize device utilization in a
multi-tenant environment.

I Molecule [13] � Distributed Shim.
I It introduces XPU-Shim, which provides

system call style interfaces to serverless
runtime.

I By using XPUcalls, serverless functions
can be instantiated on di�erent PUs (i.e.,
DPU), and communicate directly with
each other.

23

A���������� S�������
Current serverless platforms are predominantly centered on CPU resources.

I However, some kinds of workloads could benefit from the use of hardware accelerators.
I i.e., Video Processing, Machine Learning, Artificial Intelligence, and others.

How can the serverless model be adapted to support di�erent types of heterogeneous
accelerators?

I BlastFunction [4] � FPGA-as-a-Service.
I It is an FPGA sharing system for

accelerating serverless applications.
I It uses a time-sharing approach to

maximize device utilization in a
multi-tenant environment.

I Molecule [13] � Distributed Shim.
I It introduces XPU-Shim, which provides

system call style interfaces to serverless
runtime.

I By using XPUcalls, serverless functions
can be instantiated on di�erent PUs (i.e.,
DPU), and communicate directly with
each other. 23

A���������� S�������

Current serverless platforms are predominantly centered on CPU resources.

I However, some kinds of workloads could benefit from the use of hardware accelerators.
I i.e., Video Processing, Machine Learning, Artificial Intelligence, and others.

How can the serverless model be adapted to support di�erent types of heterogeneous
workflows?

Moving towards the Kernel-as-a-Servicemodel.

24

https://doi.org/10.1145/3590140.3629115

A����������M��������
At present, the serverless model lacks application modeling techniques.

I Making the understanding of the systemmore di�icult...
I ..and preventing rapid and frequent changes at high levels of abstraction.

There are various possible approaches:

I F(X)-MAN [38], extends the X-MAN component model.
I It defines two types of services: atomic and composite.
I Introduces connectors for hierarchical composition.

I Other approaches involve the usage of BPMN and TOSCA [46], or the usage of design
patterns [35].

However, further research on application modeling for serverless so�ware development is
necessary, since it has di�erent requirements w.r.t. traditional so�ware development.

25

A����������M��������
At present, the serverless model lacks application modeling techniques.

I Making the understanding of the systemmore di�icult...
I ..and preventing rapid and frequent changes at high levels of abstraction.

There are various possible approaches:

I F(X)-MAN [38], extends the X-MAN component model.
I It defines two types of services: atomic and composite.
I Introduces connectors for hierarchical composition.

I Other approaches involve the usage of BPMN and TOSCA [46], or the usage of design
patterns [35].

However, further research on application modeling for serverless so�ware development is
necessary, since it has di�erent requirements w.r.t. traditional so�ware development.

25

C����������

C����������
What have we learned?
I Serverless computing represents a further evolution of the trend
toward higher levels of abstraction in cloud computing models.

I It enables developers to write applications without dealing with
the operational logic.

I As serverless applications are event-driven, computing resources
are provisioned and instantiated by the cloud provider only when
needed.

I However, this model is not yet mature, there are several open
questions that need to be addressed.

Thank you for your attention!
Any Questions?

26

C����������
What have we learned?
I Serverless computing represents a further evolution of the trend
toward higher levels of abstraction in cloud computing models.

I It enables developers to write applications without dealing with
the operational logic.

I As serverless applications are event-driven, computing resources
are provisioned and instantiated by the cloud provider only when
needed.

I However, this model is not yet mature, there are several open
questions that need to be addressed.

Thank you for your attention!
Any Questions? 26

B����������� I

[1] Istemi Ekin Akkus et al. “SAND: Towards High-Performance Serverless Computing”. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA: USENIX
Association, July 2018, pp. 923–935. ����: 978-1-939133-01-4. ���:
https://www.usenix.org/conference/atc18/presentation/akkus.

[2] Ahsan Ali et al. “BATCH: Machine Learning Inference Serving on Serverless Platforms with
Adaptive Batching”. In: SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 2020, pp. 1–15. ���: 10.1109/SC41405.2020.00073.

[3] Lixiang Ao et al. “Sprocket: A Serverless Video Processing Framework”. In: Proceedings of
the ACM Symposium on Cloud Computing. SoCC ’18. Carlsbad, CA, USA: Association for
Computing Machinery, 2018, pp. 263–274. ����: 9781450360111. ���:
10.1145/3267809.3267815. ���: https://doi.org/10.1145/3267809.3267815.

27

https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1109/SC41405.2020.00073
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815

B����������� II

[4] Marco Bacis, Rolando Brondolin, and Marco D. Santambrogio. “BlastFunction: an
FPGA-as-a-Service system for Accelerated Serverless Computing”. In: 2020 Design,
Automation Test in Europe Conference Exhibition (DATE). 2020, pp. 852–857. ���:
10.23919/DATE48585.2020.9116333.

[5] Luciano Baresi and Giovanni Quattrocchi. “PAPS: A Serverless Platform for Edge
Computing Infrastructures”. In: Frontiers in Sustainable Cities 3 (2021). ����: 2624-9634.
���: 10.3389/frsc.2021.690660. ���:
https://www.frontiersin.org/articles/10.3389/frsc.2021.690660.

[6] David Bermbach et al. “AuctionWhisk: Using an auction-inspired approach for function
placement in serverless fog platforms”. In: So�ware: Practice and Experience 52.5 (2022),
pp. 1143–1169.

28

https://doi.org/10.23919/DATE48585.2020.9116333
https://doi.org/10.3389/frsc.2021.690660
https://www.frontiersin.org/articles/10.3389/frsc.2021.690660

B����������� III

[7] Sebastian Burckhardt et al. “Durable functions: semantics for stateful serverless”. In: Proc.
ACM Program. Lang. 5.OOPSLA (Oct. 2021). ���: 10.1145/3485510. ���:
https://doi.org/10.1145/3485510.

[8] Rajkumar Buyya, Christian Vecchiola, and S Thamarai Selvi.Mastering cloud computing:
foundations and applications programming. Newnes, 2013.

[9] James Cadden et al. “SEUSS: skip redundant paths to make serverless fast”. In:
Proceedings of the Fi�eenth European Conference on Computer Systems. EuroSys ’20.
Heraklion, Greece: Association for Computing Machinery, 2020. ����: 9781450368827. ���:
10.1145/3342195.3392698. ���: https://doi.org/10.1145/3342195.3392698.

29

https://doi.org/10.1145/3485510
https://doi.org/10.1145/3485510
https://doi.org/10.1145/3342195.3392698
https://doi.org/10.1145/3342195.3392698

B����������� IV

[10] Joao Carreira et al. “Cirrus: a Serverless Framework for End-to-end MLWorkflows”. In:
Proceedings of the ACM Symposium on Cloud Computing. SoCC ’19. Santa Cruz, CA, USA:
Association for Computing Machinery, 2019, pp. 13–24. ����: 9781450369732. ���:
10.1145/3357223.3362711. ���: https://doi.org/10.1145/3357223.3362711.

[11] Claudio Cicconetti, Marco Conti, and Andrea Passarella. “FaaS execution models for edge
applications”. In: Pervasive and Mobile Computing 86 (2022), p. 101689.

[12] Claudio Cicconetti, Marco Conti, and Andrea Passarella. “In-Network Computing With
Function as a Service at the Edge”. In: Computer 55.9 (2022), pp. 65–73. ���:
10.1109/MC.2021.3130659.

30

https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1109/MC.2021.3130659

B����������� V

[13] Dong Du et al. “Serverless computing on heterogeneous computers”. In: Proceedings of
the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’22. Lausanne, Switzerland: Association for
Computing Machinery, 2022, pp. 797–813. ����: 9781450392051. ���:
10.1145/3503222.3507732. ���: https://doi.org/10.1145/3503222.3507732.

[14] Nabil El Ioini et al. “Unikernels Motivations, Benefits and Issues: A Multivocal Literature
Review”. In: Proceedings of the 3rd Eclipse Security, AI, Architecture and Modelling
Conference on Cloud to Edge Continuum. ESAAM ’23. Ludwigsburg, Germany: Association
for Computing Machinery, 2023, pp. 39–48. ����: 9798400708350. ���:
10.1145/3624486.3624492. ���: https://doi.org/10.1145/3624486.3624492.

31

https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1145/3624486.3624492
https://doi.org/10.1145/3624486.3624492

B����������� VI

[15] D. R. Engler, M. F. Kaashoek, and J. O’Toole. “Exokernel: an operating system architecture
for application-level resource management”. In: SIGOPS Oper. Syst. Rev. 29.5 (Dec. 1995),
pp. 251–266. ����: 0163-5980. ���: 10.1145/224057.224076. ���:
https://doi.org/10.1145/224057.224076.

[16] Erwin van Eyk et al. “The SPEC Cloud Group’s Research Vision on FaaS and Serverless
Architectures”. In: Proceedings of the 2nd International Workshop on Serverless Computing.
WoSC ’17. Las Vegas, Nevada: Association for Computing Machinery, 2017, pp. 1–4. ����:
9781450354349. ���: 10.1145/3154847.3154848. ���:
https://doi.org/10.1145/3154847.3154848.

32

https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/224057.224076
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848

B����������� VII

[17] Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach. “USETL: Unikernels for
Serverless Extract Transform and Load Why should you settle for less?” In: Proceedings of
the 10th ACM SIGOPS Asia-Pacific Workshop on Systems. APSys ’19. Hangzhou, China:
Association for Computing Machinery, 2019, pp. 23–30. ����: 9781450368933. ���:
10.1145/3343737.3343750. ���: https://doi.org/10.1145/3343737.3343750.

[18] Ian Foster and Carl Kesselman, eds. The grid: blueprint for a new computing infrastructure.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998. ����: 1558604758.

[19] Sadjad Fouladi et al. “Encoding, fast and slow:{Low-Latency} video processing using
thousands of tiny threads”. In: 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 2017, pp. 363–376.

33

https://doi.org/10.1145/3343737.3343750
https://doi.org/10.1145/3343737.3343750

B����������� VIII

[20] Philipp Gackstatter, Pantelis A. Frangoudis, and Schahram Dustdar. “Pushing Serverless to
the Edge with WebAssembly Runtimes”. In: 2022 22nd IEEE International Symposium on
Cluster, Cloud and Internet Computing (CCGrid). 2022, pp. 140–149. ���:
10.1109/CCGrid54584.2022.00023.

[21] Vicent Giménez-Alventosa, Germán Moltó, and Miguel Caballer. “A framework and a
performance assessment for serverless MapReduce on AWS Lambda”. In: Future
Generation Computer Systems 97 (2019), pp. 259–274.

[22] Tom Goethals et al. “Unikernels vs Containers: An In-Depth Benchmarking Study in the
Context of Microservice Applications”. In: 2018 IEEE 8th International Symposium on Cloud
and Service Computing (SC2). 2018, pp. 1–8. ���: 10.1109/SC2.2018.00008.

34

https://doi.org/10.1109/CCGrid54584.2022.00023
https://doi.org/10.1109/SC2.2018.00008

B����������� IX

[23] Scott Hendrickson et al. “Serverless Computation with OpenLambda”. In: 8th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 16). Denver, CO: USENIX
Association, June 2016. ���:
https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/hendrickson.

[24] David Jensen. Beginning Azure IoT Edge computing: extending the cloud to the intelligent
edge. Apress, 2019.

[25] Eric Jonas et al. “Cloud Programming Simplified: A Berkeley View on Serverless
Computing”. In: (2019).

35

https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson

B����������� X

[26] Dong Kyoung Kim and Hyun-Gul Roh. “Scheduling Containers Rather Than Functions for
Function-as-a-Service”. In: 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). 2021, pp. 465–474. ���:
10.1109/CCGrid51090.2021.00056.

[27] Samuel Kounev et al. “Serverless Computing: What It Is, and What It Is Not?” In: Commun.
ACM 66.9 (Aug. 2023), pp. 80–92. ����: 0001-0782. ���: 10.1145/3587249. ���:
https://doi.org/10.1145/3587249.

36

https://doi.org/10.1109/CCGrid51090.2021.00056
https://doi.org/10.1145/3587249
https://doi.org/10.1145/3587249

B����������� XI

[28] Simon Kuenzer et al. “Unikra�: fast, specialized unikernels the easy way”. In: Proceedings
of the Sixteenth European Conference on Computer Systems. EuroSys ’21. Online Event,
United Kingdom: Association for Computing Machinery, 2021, pp. 376–394. ����:
9781450383349. ���: 10.1145/3447786.3456248. ���:
https://doi.org/10.1145/3447786.3456248.

[29] Agus Kurniawan. Learning AWS IoT: E�ectively manage connected devices on the AWS cloud
using services such as AWS Greengrass, AWS button, predictive analytics and machine
learning. Packt Publishing Ltd, 2018.

37

https://doi.org/10.1145/3447786.3456248
https://doi.org/10.1145/3447786.3456248

B����������� XII

[30] Stefan Lankes, Jens Breitbart, and Simon Pickartz. “Exploring Rust for Unikernel
Development”. In: Proceedings of the 10th Workshop on Programming Languages and
Operating Systems. PLOS ’19. Huntsville, ON, Canada: Association for Computing
Machinery, 2019, pp. 8–15. ����: 9781450370172. ���: 10.1145/3365137.3365395. ���:
https://doi.org/10.1145/3365137.3365395.

[31] I.M. Leslie et al. “The design and implementation of an operating system to support
distributedmultimedia applications”. In: IEEE Journal on Selected Areas in
Communications 14.7 (1996), pp. 1280–1297. ���: 10.1109/49.536480.

[32] Fang Liu et al. NIST Cloud Computing Reference Architecture. en. 2011-09-08 00:09:00 2011.
���: https://doi.org/10.6028/NIST.SP.500-292. ���:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909505.

38

https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1109/49.536480
https://doi.org/https://doi.org/10.6028/NIST.SP.500-292
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909505

B����������� XIII

[33] Ju Long et al. “A Lightweight Design for Serverless Function as a Service”. In: IEEE So�ware
38.1 (2021), pp. 75–80. ���: 10.1109/MS.2020.3028991.

[34] Anil Madhavapeddy et al. “Unikernels: library operating systems for the cloud”. In:
SIGARCH Comput. Archit. News 41.1 (Mar. 2013), pp. 461–472. ����: 0163-5964. ���:
10.1145/2490301.2451167. ���: https://doi.org/10.1145/2490301.2451167.

[35] Anil Mathew et al. “Pattern-based serverless data processing pipelines for
Function-as-a-Service orchestration systems”. In: Future Generation Computer Systems
154 (2024), pp. 87–100. ����: 0167-739X. ���:
https://doi.org/10.1016/j.future.2023.12.026. ���:
https://www.sciencedirect.com/science/article/pii/S0167739X23004855.

39

https://doi.org/10.1109/MS.2020.3028991
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/2490301.2451167
https://doi.org/https://doi.org/10.1016/j.future.2023.12.026
https://www.sciencedirect.com/science/article/pii/S0167739X23004855

B����������� XIV

[36] Edward Oakes et al. “SOCK: Rapid Task Provisioning with Serverless-Optimized
Containers”. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, July 2018, pp. 57–70. ����: 978-1-931971-44-7. ���:
https://www.usenix.org/conference/atc18/presentation/oakes.

[37] Tobias Pfandzelter and David Bermbach. “tinyFaaS: A Lightweight FaaS Platform for Edge
Environments”. In: 2020 IEEE International Conference on Fog Computing (ICFC). 2020,
pp. 17–24. ���: 10.1109/ICFC49376.2020.00011.

40

https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1109/ICFC49376.2020.00011

B����������� XV

[38] Chen Qian and Wenjing Zhu. “F(X)-MAN: An Algebraic and Hierarchical Composition Model
for Function-as-a-Service”. In: The 32nd International Conference on So�ware Engineering
and Knowledge Engineering, SEKE 2020, KSIR Virtual Conference Center, USA, July 9-19,
2020. Ed. by Raúl García-Castro. KSI Research Inc., 2020, pp. 210–215. ���:
10.18293/SEKE2020-022. ���: https://doi.org/10.18293/SEKE2020-022.

[39] Andreas Rossberg.WebAssembly Core Specification. W3C, Dec. 5, 2019. ���:
https://www.w3.org/TR/wasm-core-1/.

[40] Hossein Shafiei, Ahmad Khonsari, and PayamMousavi. “Serverless Computing: A Survey
of Opportunities, Challenges, and Applications”. In: ACM Comput. Surv. 54.11s (Nov. 2022).
����: 0360-0300. ���: 10.1145/3510611. ���: https://doi.org/10.1145/3510611.

41

https://doi.org/10.18293/SEKE2020-022
https://doi.org/10.18293/SEKE2020-022
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1145/3510611
https://doi.org/10.1145/3510611

B����������� XVI

[41] Vaishaal Shankar et al. “Numpywren: Serverless linear algebra”. In: arXiv preprint
arXiv:1810.09679 (2018).

[42] Blesson Varghese and Rajkumar Buyya. “Next generation cloud computing: New trends
and research directions”. In: Future Generation Computer Systems 79 (2018), pp. 849–861.
����: 0167-739X. ���: https://doi.org/10.1016/j.future.2017.09.020. ���:
https://www.sciencedirect.com/science/article/pii/S0167739X17302224.

[43] WebAssembly Community Group.WebAssembly System Interface. Feb. 29, 2020. ���:
https://github.com/WebAssembly/WASI/blob/
d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md.

42

https://doi.org/https://doi.org/10.1016/j.future.2017.09.020
https://www.sciencedirect.com/science/article/pii/S0167739X17302224
https://github.com/WebAssembly/WASI/blob/d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md
https://github.com/WebAssembly/WASI/blob/d8b286c697364d8bc4daf1820b25a9159de364a3/phases/snapshot/docs.md

B����������� XVII

[44] Jinfeng Wen et al. “Rise of the Planet of Serverless Computing: A Systematic Review”. In:
ACM Trans. So�w. Eng. Methodol. 32.5 (July 2023). ����: 1049-331X. ���:
10.1145/3579643. ���: https://doi.org/10.1145/3579643.

[45] Song Wu et al. “Container lifecycle-aware scheduling for serverless computing”. In:
So�ware: Practice and Experience 52.2 (2022), pp. 337–352. ���:
https://doi.org/10.1002/spe.3016. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3016. ���:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3016.

43

https://doi.org/10.1145/3579643
https://doi.org/10.1145/3579643
https://doi.org/https://doi.org/10.1002/spe.3016
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3016
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3016

B����������� XVIII

[46] Vladimir Yussupov et al. “Standards-basedmodeling and deployment of serverless
function orchestrations using BPMN and TOSCA”. In: So�ware: Practice and Experience
52.6 (2022), pp. 1454–1495. ���: https://doi.org/10.1002/spe.3073. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3073. ���:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073.

44

https://doi.org/https://doi.org/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3073
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3073

A�������

E������� I����������� �� S���������
Serverless
Serverless computing is a form of cloud computing that allows users to run event-driven and
granularly billed applications, without having to address the operational logic [16] .

Furthermore, a serverless service exhibits the following characteristics [40] [44]:

1. NoOps: The execution environment is hidden from the customer and completely managed
by the cloud provider (no operations needed).

2. Auto-scaling: The cloud provider is responsible for providing andmanaging an auto-scaling
service.

3. Utilization-based billing: The billing mechanismmust only take into account the number of
resources actually used by the customer (i.e. pay-as-you-go).

4. Separation of computation and storage: Generally, serverless computation should be
stateless (This is not always true).

S��������� S������M�����
Function as a Service
Function as a Service (FaaS) is a form of serverless computing in which the cloud provider
manages the resources, life-cycle, and event-driven execution of user-provided functions [16].

Backend as a Service
Backend as a Service (BaaS) is a form of serverless computing focused on providing specialized
serverless frameworks that cater to specific application requirements (i.e., object storage,
databases, or messaging services) [25].

Container as a Service
Container as a Service (CaaS) is a cloud service model that allows users to deploy andmanage
containers in the cloud [42]. CaaS can be seen as a form of serverless computing, depending
on the level of abstraction and automation it provides [27].

S��������� �� T���������� S������� D����������

Serverless so�ware development di�ers from traditional non-cloud so�ware development.

Features Non-cloud SWD Serverless SWD

Server management Full management Nomanagement
Functionality implementation Implement everything from scratch Implement only event-driven code
Invocation pattern Client-side calls Event triggers
Performance Always activated Activated only if triggered (cold start)
Cost Pay for everything Only pay for the resources you use

T���������� �� I��S �� P��S �� F��S

P��S �� F��S

Source:
https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-vs-paas/

https://www.cloudflare.com/en-gb/learning/serverless/glossary/serverless-vs-paas/

PART TWO

Lanpei Li
March 1st, 2024

PESARESI SEMINAR SERIES

BEYOND THE CLOUD
EXPLORING SERVERLESS COMPUTING AND CLOUD CONTINUUM

Cloud / IoT
Continuum

Modern computing paradigms

Cloud computing
Mobile cloud computing

Fog computing
Edge computing

“A model for enabling convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications and services) that can be
rapidly provisioned and released with minimal
management effort or service provider
interaction".

P. Mell, T. Grance, et al., The NIST Definition of Cloud Computing, Computer Security Division, National Information Technology Laboratory, 2011.

Advantages Limitations

Modern computing paradigms

Cloud computing

Mobile cloud computing(MCC)
Fog computing

Edge computing

Advantages Limitations

“A mobile device that can execute a
resource-intensive application on a
distant high-performance compute
server or compute cluster and
support thin client user interactions
with the application over the
Internet.”

N.I.M. Enzai, M. Tang, A taxonomy of computation offloading in mobile cloud computing, in: 2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, 2014, pp. 19–28.

Modern computing paradigms

Cloud computing
Mobile cloud computing

Fog computing
Edge computing

Advantages Limitations

“ The process of extending Cloud
Computing capabilities at the edge of
the network. Fog incorporates
computing, storage and network
resources close to the IoT layer to
facilitate the data processing”

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of Things, in; Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, 2012, pp. 13–16.

R. Cisco, M.Y. Upc, M. Nemirovsky, Fog computing, in: Proc. Cloud Assist. Serveys Eur. Conf. Bled, 2012, pp. 1–15.

Modern computing paradigms

Cloud computing
Mobile cloud computing
Fog computing

Edge computing

Advantages Limitations

“A key technology to assist wireless
networks with Cloud Computing-like
capabilities to provide low-latency and
context-aware services directly from the
network Edge.”

S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan, D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, et al., MEC In 5G networks, ETSI White Paper 28 (2018) 1–28.

Where does the cloud continue?

IoTs

Edge

Fog

Cloud

Bittencourt, Luiz Fernando et al. “The Internet of Things, Fog and Cloud Continuum: Integration and Challenges.” ArXiv abs/1809.09972 (2018): n. pag.

Cloud Continuum
An extension of the traditional Cloud towards multiple entities
(e.g., Edge, Fog, IoT) that provide analysis, processing, storage,
and data generation capabilities.

S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hästbacka and D. Taibi, "Cloud Continuum: The Definition," in IEEE Access, vol. 10, pp. 131876-
131886, 2022, doi: 10.1109/ACCESS.2022.3229185.

TANSTAAFL

Objective :

Use cases
• Immersive applications
• Autonomous vehicles
• Video streaming
• Space-Terrestrial
• Robotics
• IoT T-FG-NET2030-2020-SUB.G1-PDF-E

Characteristic

HETEROGENEOUS DISTRIBUTED REQUIREMENTS

Challenges
• Resource Orchestration

• Dynamic Allocation
• Network Partitioning
• Positioning
• Localization
• Job Scheduling
• Task Offloading

• Interoperability
• Performance

• Scalability
• Mobility
• Consistency
• …

• Robustness
• Security

Task
Offloading
“The transfer of resource-
intensive computational
tasks to an external,
resource-rich platform such
as the ones used in Cloud,
Edge or Fog Computing.”

Saeik F., Avgeris M., Spatharakis D., Santi N., Dechouniotis D., Violos J., Leivadeas A., Athanasopoulos N., Mitton N., Papavassiliou S. Task offloading in edge and cloud computing: A survey on mathematical, artificial
intelligence and control theory solutions

Challenges
• What to offload?
• Why to offload?
• When to offload (static or dynamic)?
• Where to offload?
• How to offload?

Objective
• Delay
• Energy
• Bandwidth
• Load balancing
• Deployment cost
• Model accuracy
• Multi-objective

Configuration
views

User/server-oriented edge architectures

Offloading decision.

Granularity-based offloading decision.

Computation offloading sub-problems.

Device-Edge-Cloud communication strategy.

Methodologies

• Mathematical optimization algorithms
• Control theory-based algorithms
• AI-based optimization algorithms

Problem formulation

• !"#$! : !! =< '! ,)! , *! >
• ,-)". /0/)1*2-3 *24/ -5 *"#$! ∶ 7!" = #!

$"
• O55.-"' *24/ -5 *"#$! ∶ 7!% = &!

ℛ
• ,"*/3)8 "* /'9/: 7!()# = #!

*#$

• ,"*/3)8 "*).-1': 7!# = #!
*%$

• ;/4-*/ /0/)1*2-3 *24/: !!+ = 1 − %! 	!!()# + %!	!!#(ℎ*+* % = {0, 1}, edge or cloud?

Choudhury, Alok, Manojit Ghose, and Akhirul Islam. "Machine learning-based computation offloading in multi-access edge computing: A survey." Journal of Systems Architecture (2024): 103090.

Latency minimization

! = #
!"#

$
(1 − ') !!% + '!!!& *ℎ,-, ' = 0, 1

!"#"!"$% &, 012ℎ 3ℎ43 ∶
C1: !! ≤ 3'

C2: ∑!"# 2! ≤ ;%
C3: ∑!"# 2! ≤ =()

Choudhury, Alok, Manojit Ghose, and Akhirul Islam. "Machine learning-based computation offloading in multi-access edge computing: A survey." Journal of Systems Architecture (2024): 103090.

RL-based Solution

• Task： =, t , ?, t , @, t

• Latency： τ-,/ ≈ !01 + !2+3# = 4!
5!,#

+ 6!
$#

• ComHIJKJLMN：O J = f7 t , f8 t , … O9 t (LJℎ O/ J = 1 − η*: J S:	
• SJM+KU*： V J = V7 J , V8 J , … V; J with V: J = 1 − η<: J Z:
• Networking：U J = U!,= J L, \ ∈ ^, L ≠ \ with U!,= J = ℎ!,= J `!,=

>?

Wireless Signal Processing and Networking Laboratory (WSPN), Beijing University of Posts and Telecommunications (BUPT), “A joint computing offloading and resource allocation method for
5G multi-access edge computing”, 2022.9.22.

RL-based Solution

• Action：a t = α,,: J , O: J ∈ b

• Observation：s t = cNd@, @Kef@ = O t , V t , U J , W- t , D- t , T- t ∈ i

• Reward：ℛ t = ℱ t − l t = mKn 79∑,∈B∑:∈; α-,/ J τ-,/ J − pC ∑:∈; 1 − α,,: J

Wireless Signal Processing and Networking Laboratory (WSPN), Beijing University of Posts and Telecommunications (BUPT), “A joint computing offloading and resource allocation method for
5G multi-access edge computing”, 2022.9.22.

Evaluation Metrics

LATENCY ENERGY
CONSUMPTION

BANDWIDTH
UTILIZATION

RESPONSE TIME SYSTEM COST ALGORITHM
EFFICIENCY

MULTI OBJECTIVE
FUNCTION

Challenges in
ML-based
offloading

ENERGY
CONSUMPTION

PROBLEM
FORMULATION

TECHNIQUE

PARTITIONING
GRANULARITY

RESOURCE
UTILIZATION

RESOURCE
SCHEDULING

MOBILITY

Conclusion
• Cloud / IoT Continuum
• Task Offloading
• ML-based solution

Thank you and Questions

